A worldwide explosion of interest in organic carbon-rich mudstones, commonly known as “black shales”, stems from the now firmly established fact that such rocks may be not only the sources of hydrocarbons but also potentially productive reservoirs. This industry-driven focus of attention resulted in several breakthroughs in exploration geology, including the interpretation of wireline logging, hydraulic fracturing techniques and reservoir modelling, so that during the last decade a number of shale-gas plays gained production status, particularly in North America. It is not surprising that the eyes of explorationists and oil geologists turned to the Lower Palaeozoic mudrock belt of the East European Craton in Poland, as these rocks extend for a 700-km-long subcrop, attain several hundred metres in thickness, and in burial depth descend to the dry gas window. As a part of this initiative, the Polish National Research and Development Centre (NCBiR) launched the multidisciplinary project ((BG1/GAZGEO1MOD/13) “Construction of the Lower Palaeozoic extent’s maps, biostratigraphy, and analysis of the tectonic evolution of the marginal zone of the Eastern European Platform for estimation of unconventional hydrocarbon deposits distribution”, aimed at acquiring new high-quality subsurface data and constructing conceptual models that would facilitate prediction of the occurrence of resource-quality mudstone within this continuous, though remarkably heterogeneous reservoir. The project is based on new data obtained from the Polish Oil and Gas Company and Orlen Upstream license areas and on all other geological information available in the public domain. During realization of the project, a workshop held at Srebrna Góra, Sudety Mts, Poland, served as a forum for the integration of results and the exchange of ideas between participants from academia and industry (Figs 1–4). The participants also had the opportunity to examine the Silurian black shales, exposed in the classical Żdanów road section. The main results of the project were presented in the form of a book, printed in Polish (Golonka and Bębenek, 2017). Following an invitation from Annales Societatis Geologorum Poloniae (ASGP), the present editors decided to compile some of the contributions in two issues of vol. 89 of ASGP.

The present issue is a collection of seven papers representing a good sample of the scope of the project. The existing lithostratigraphic classification of the Ordovician and Silurian has been revised and unified with respect to the mudstone formations that occur throughout the Baltic, Podlasie and Lublin basins (Fig. 5; Porębski and Podhalańska, this volume). New palaeoenvironmental interpretations of the Cambrian siliciclastic systems are presented for the Lublin Basin (Stadnik et al., this volume). The sedimentary features of the Cambrian formations documented vertical and lateral variations of shallow-marine sedimentary facies, deposited at the rifted western margin of the Baltica palaeocontinent. The lithologic diversity reflects dynamic variation in depositional environments.

DATING by apatite fission-track analysis and zircon (U-Th)/He analysis shows that the maximum burial and maximum temperature of Ediacaran–Lower Palaeozoic strata of the East European Craton varied between the Early Carboniferous in the Baltic Basin and the Early Permian in the SE corner of the Lublin Basin (Botor, Golonka, Anczkiewicz et al., this volume). The numerical modelling of petroleum generation and expulsion indicates that these processes took place mainly in the Devonian and Carboniferous and extended into the latest Silurian along the Teisseyre-Tornquist Zone, while hydrocarbon expulsion occurred with a small delay after generation (Botor, Golonka, Zając et al., this volume).

A new structural model, based on cross-section restoration and subsidence analysis, indicates that Silurian shales in the Lublin Basin acted as a detachment level during the Late Carboniferous shortening (Kufrasa et al., this volume). The geological interpretation of reflective seismics in the Baltic Basin has permitted the recognition of four structural stages that constrained the formation of intervals prospective for unconventional hydrocarbon accumulations (Kasperska et al., this volume). Potential sweet spots in the Ordovician shales of the Baltic Basin are pinpointed on the basis of a combination of the acoustic inversion of seismic data with the petrophysical analysis of well-logs (Cichostępski et al., this volume).
Fig. 1. Discussion during coffee break at Srebrna Góra Conference (May 11th–14th, 2017). Arkadiusz Buniak, Dagmara Krawiec, Bartosz Papiernik, Dariusz Botor and others. Photograph by Szczepan J. Porębski.

Fig. 2. Heated debate at Srebrna Góra Conference. Piotr Krzywiec, Robert Anczkiewicz and Jan Golonka. Photograph by Szczepan J. Porębski.
Fig. 3. Explanation of Srebrna Góra geology before field trip. From left: Alfred Uchman, Anna Waśkowska, Jan Barmuta, Dariusz Botor, Zbigniew Mikołajewski, Sylwia Kowalska, Mariusz Paszkowski and others. Photograph by Szczepan J. Porębski.

Fig. 4. Discussion at outcrop during Srebrna Góra Conference. From left: Robert Anczkiewicz, Kaja Pietsch, Jan Golonka and others. Photograph by Szczepan J. Porębski.
REFERENCES


