Wacław Florek

NIEKTÓRE PROBLEMY SEDIMENTOLOGICZNE ZWIĄZANE Z BUDOWĄ TERAS ŚRODKOWO- I MŁODOHOLOCEŃSKICH DOLNEGO BOBRU

(7 fig.)

Some sedimentological problems concerning the geology of Middle and Young Holocene terraces of the lower section of the Bóbbr valley (Western Poland).

(7 Figs.)

A b s t r a c t: Fossilization of tree trunks in deposits of Middle and Young Holocene terraces of the lower section of the Bóbbr valley (Western Poland) was caused by lateral channel migration between the Atlantic and Subboreal Phases. The infilling of paleomeanders, preserved on terrace plains was found to have started at the beginning of Subboreal b or in the Subatlantic a Phases.

K e y w o r d s: fossilization of tree trunks, river terraces, Holocene, Bóbbr valley, Western Poland.

manuscript, received: March, 1981 _accepted_: Mai, 1983

T r e ś c: Fosylizacja pni drzewnych w osadach teras środkowo- i młodohołocenńskich dolnego Bobru dokonała się na przełomie okresu atlantyckiego i subborealnego, w wyniku bocznej migracji koryt meandrowych. Wypełnianie paleomeandrów zachowanych na powierzchniach teras rozpoczęło się na początku okresu subborealnego b lub w okresie subatlantyckim a.

WPROWADZENIE

Autor przez kilka lat prowadził badania nad rozwodem dna doliny Bobru na odcinku od Żagania do Krosna Odrzańskiego (por. fig. 1). Głównym przedmiotem prac był obszar rozległych dwóch najniższych poziomów terasowych, których wiek został następnie określony na środkowo- i młodohołocenński oraz współczesny.
Fig. 1. Szkic sytuacyjny badań (A) i mapa geomorfologiczna obszaru otaczającego dolinę dolnego Bobru (B). Zlodowacenie środkowopolskie: 1 – morena czołowa spiętrzona, 2 – powierzchnie sândrowe, 3 – wysoczynka morenowa płaska i falista z pokrywą utworów peryglacialnych, 4 – wysoczynka morenowa pagórkowata z pokrywą utworów peryglacialnych; zlodowacenie bałtyckie: 5 – linia zasięgu zlodowacenia bałtyckiego, 6 – powierzchnie sandrowe sypane na lodzie martwym, 7 – powierzchnie różnych poziomów sandrowych, 8 – powierzchnie sandrowe leżące na starych zaburzonych glaciektynicznie formach plejstoceńskich, 9 – kemy, 10 – terasy kermen, 11 – rynnę glacialne; plejstocen i holocen: 12 – powierzchnie starszych poziomów terasowych, 13 – wyższe terasy Bobru, 14 – dna dolin rzecznych, 15 – większe formy wydmowe, 16 – młode rozczepia dolinne, 17 – sieć hydrograficzna.

Zasadnicze problemy związane z ich powstaniem zostały przez autora rozstrzygnięte na drodze interdyscyplinarnych studiów (Florek, 1979). Kilka z nich sta-nowiły zagadnienia z zakresu sedimentologii, takie jak: fosylizacja pni drzewnych w osadach rzecznych, geometria paleokory i litologia wypełniających je osadów.

FOSYLIZACJA PNI DRZEWNYCH W OSADACH RZECZNYCH

Duża dynamika środowiska fluwialnego powoduje nieustanne przemieszanie się osadów oraz mieszanie się szczątków różnowiekowych. Niszczącej dzia-

Większość znajdowanych pni drzewnych tkwi w osadach wypełniających dna

Fig. 2. Położenie datowanych pni czarnych dębów w osadach. A – lokalizacja odsłonięć, I – odsłonięcie w lewym brzegu, 2, 3 – odsłonięcie w prawym brzegu Bobru na północ od Gorzupi Dolnej.

Fig. 2. The position of dated black oak trunks. A – outcrops, 1 – left bank, 2, 3 – right bank of the Bôbr valley, to the North of Gorzupia Dolna
Fig. 3. Schemat obrazujący proces fosyliizacji dębu w osadach Bobru w rejonie Popowic. A – stan koryta z lipca 1974 roku, B – stan z lipca 1976 roku, C, D – kolejne, hipotetyczne etapy rozwoju meandru w przypadku utrzymania się istniejących tendencji, 1 – 4 – przekroje poprzeczne przez koryto i dolinę Bobru ukazujące pozycję dębu, który uległ fosyliizacji.

Fig. 3. Scheme illustrating the fossilisation of oak trunks within the Bóbr deposits, in the vicinity of Popowice. A – channel course from July 1974, B – channel course from July 1976, C, D – supposed consecutive stages of the meander development when assuming contemporary tendencies, 1 – 4 – cross-sections of the river bed and the valley of Bóbr, showing the position of the fossilised oak trunk.
dolin rzecznych, osadach korytowych; rzadko znalezisk takich dokonuje się w osadach wypełniających paleomeandrę, czy w osadach pozakorytowych. Szczegółowe omówienie tego zagadnienia znajduje się w dwóch pracach autora (Florek, 1978a, 1979).

CECHY OSADÓW WYPEŁNIAJĄCYCH PALEOMEANDRY BOBRU
NA TLE PROCESÓW ICH FOSYLIZACJI

Jedną z cech charakterystycznych środkowo- i młodoholocenickich teras stanowiących współczesne dno doliny Bobru są liczne ślady paleomeandrów. Analiza ich cech geometrycznych stała się przedmiotem oddzielnej publikacji autora (Florrek, 1978b). Osady wypełniające paleomeandrę poznano dzięki licznym wierszeniom i wkopom wykonanym na obszarze czterech paleomeandrów (fig. 4–7).
Zostały one wybrane na podstawie studiów nad mapą, zdjęciami lotniczymi oraz po rekonesansach terenowych. Paleomeandry te różnią się lokalizacją, wielkością, kształtem i sąsiadującymi z nimi formami. Badania terenowe wykazały, że różnią się również budową geologiczną.

Dwa pierwsze paleomeandry położone w rejonie Dobruszowa Małego (fig. 4) i Nowogrodu Bobrzańskiego (fig. 5) są formami dużymi. Miąższość utworów wypełniających obydwa paleomeandry jest natomiast niewielka. Paleomeander Dobruszów Mały wypełniają głównie osady drobnoipszczyste z dość znacznym udziałem frakcji mukowych i mułki. Osadów organogenicznych jest niewiele i ich miąższość nigdzie nie przekracza 0,40 m, wzrastając stopniowo od południowej

Fig. 4. Paleomeander Dobruszów Mały. A - szkic ukazujący położenie paleomeandru; B - szkic hipsometryczny paleomeandru z nanieśonymi punktami badawczymi: 1 - wiercienia, c-c' - położenie przekroju geologicznego; C - strefa występowania i miąższości facji starorzeczy: 1 - obszar występowania osadów organogenicznych; D - główny przekrój geologiczny: 1 - żwir z głazikami, 2 - piasek gruboziarnisty, 3 - piasek gruboziarnisty z domieszka piasku średnioziarnistego, 4 - piasek średnioziarnisty, 5 - piasek średnioziarnisty z domieszką piasku drobnoziarnistego, 6 - piasek drobnoziarnisty z domieszką mułku, 7 - torf brunatny z przestarstwieniami mułku, 8 - torf brunatny czysty, 9 - wiercienia.

Fig. 4. Paleomeander of Dobruszów Mały. A - situation sketch; B - topographic sketch showing investigated points: 1 - borings, c-c' - geological cross-section shown in Fig. D; C - distribution and thickness of oxbow facies deposits: 1 - organogenic deposits; D - main geological cross-section: 1 - gravels with boulders, 2 - coarse-grained sand, 3 - coarse-grained sand containing an admixture of medium-grained sand, 4 - medium-grained sand, 5 - medium-grained sand with the admixture of fine-grained sand, 6 - fine-grained sand and silt, 7 - brown peat, containing intercalations of silt, 8 - brown peat, 9 - borings.
Fig. 5.Paleomeander Nowogród Bobrzański. A – szkic ukazujący położenie paleomeandru; B – szkic hipsometryczny paleomeandru z naniesionymi punktami badawczymi: 1 – wiercenia archiwalne i wykonane przez autora, 2 – lokalizacja przekroju geologicznego; C – przestrzenny rozkład miąższości osadów wypełniających paleomeander: 1 – strefa występowania osadów organogenicznych; D – główny przekrój geologiczny: 1 – żwir i piasek gruboziarnisty z powierzchni bruku erozyjnego, 2 – piasek gruboziarnisty, 3 – piasek średnioziarnisty, 4 – piasek drobnoziarnisty, 5 – piasek drobnoziarnisty z przewarstwieniami mulku, 6 – mulek z przewarstwieniami piasku, 7 – torf rozłożony, czarny z przewarstwieniami mulku, 8 – torf brunatny, czysty, 9 – wiercenia archiwalne, 10 – wiercenia wykonane przez autora

Fig. 5. Paleomeander of Nowogród Bobrzański. A – localisation sketch; B – topographic sketch showing investigated points: 1 – borings, 2 – geological cross-section; C – spatial distribution of thickness of deposits filling the paleomeander; D – organogenic deposits; D – geological cross-section: 1 – gravels and coarse-grained sands containing erosional pavement-surface, 2 – coarse-grained sand, 3 – medium-grained sand, 4 – fine-grained sand, 5 – fine-grained sand containing silt intercalations, 6 – silt with sand intercalations, 7 – black, decayed peat containing silt intercalations, 8 – brown peat, 9 – archival boreholes, 10 – borings made by the author

części paleomeandru w kierunku północnym. W części paleomeandru sąsiadującej z wysoką krawędzią terasy leszczyńskiej osady fluwialne i organogeniczne wypełniające paleomeander są nadbudowane kilkudzięściocentymetrową warstwą
piasku, będącego produktem procesów stokowych, które miały zapewne miejsce w niezbyt odległej przeszłości.

Wschodnia część paleomeandru położonego na północ od Nowogrodu Bobrzańskiego ograniczona jest wysoką, 10–12 metrową krawędzią 85 metrowej terasy w pradolinie barucko-głogowskiej. Osady fluwialne na obszarze tego paleomeandru rozpoznano do głębokości 8–12 metrów. Przestrzenny rozkład miąż-

Fig. 6. Paleomeander Wysoka – południe. A – lokalizacja paleomeandru na tle otaczających go jednostek morfologicznych; B – obraz hipsometryczny paleomeandru z zaznaczonymi punktami badawczymi: 1 – wiercenia, b-b’ – położenie górnego przeżroku geologicznego; C – przestrzenny rozkład miąższości osadów wypełniających paleomeander: 1 – strefa występowania osadów organogenicznych; D – główny przeżrok geologiczny: 1 – żwir gruboziarnisty, 2 – piasek średnioziarnisty, 3 – piasek drobnoziarnisty, 4 – piasek średnioziarnisty z przekształceniami humusowo-węglistymi, 5 – mulek, 6 – tof brunatny, czysty, 7 – tof brunatny, czysty z przekształceniami mineralnymi, 8 – tof rozłożony czarny, 9 – otwory wiertnicze

Fig. 6. Paleomeander of Wysoka – South. A – morphological sketch; B – topographic sketch showing investigated places: 1 – boreholes, b-b’ – geological cross-section shown in Fig. D; C – spatial distribution of thickness of deposits filling paleomeander: 1 – organogenic deposits; D – geological cross-section: 1 – pebbles, 2 – medium-grained sand, 3 – fine-grained sand, 4 – medium-grained sands containing humus intercalations, 5 – silt, 6 – brown peat, 7 – brown peat containing mineral intercalations, 8 – black, decayed peat, 9 – boreholes
szości osadów wypełniających paleomeander przedstawia fig. 5C. Torfy osiągają tu miąższność do 1,0 m i występują w postaci warstwy o większej miąższości w północnej części paleomeandru. Tworzą z reguły powierzchniową warstwę osadów. Ilustruje to przekrój geologiczny wykonany przez północną część paleomeandru (fig. 5D). Przekrój obejmuje również obszar meandrowych łach wałowych i obnienie pomiędzy nimi.

Następne dwa paleomeandry są formami mniejszymi i przy mniejszej szerokości koryta — głębszymi. Na wypełnienie paleomeandru położonego 0,5 km na południe od Wysoka składają się w znacznym stopniu osady mineralne, lecz bardziej drobnoziarniste, aniżeli w dwóch poprzednio opisywanych paleomeandrach.ZNaczniejszą rolę odgrywają tu osady organogeniczne — torfy tworzą tu trzy róże miąższości warstwy (fig. 6D). Zwraca uwagę również fakt, iż torfy występują na niemal całym obszarze paleomeandru (fig. 6C).

Czwarty z wybranych przez autora paleomeandrów położony jest nieszpna 2,0 km na północo-zachód od Wysokiej. Cechy morfologiczne tego paleomeandru, warunki geologiczne i geomorfologiczne zostały już przez autora przedstawione (por. Florek, 1981).

Paleomeander ten nie ma formy typowej dla meandrów swobodnych, bowiem rozwijał się na odcinku przełomowym Bobru przez formy marginalne ostatniego glacjału, uzupełnione od wschodu zachodnim fragmentem Wału Zielonogórskiego. Jest to forma dość duża, ale cechująca się niewielką szerokością koryta, podobnie jak paleomeander Wysoka — południe.

Paleomeander ogranicza od wschodu około czterometrowej wysokości krawędź wąskiego fragmentu wyższego poziomu terasowego, który zbudowany jest z piasków i żwirów, podścielonych gliną (fig. 7D). W partii krawędziowej granica pomiędzy tymi dwoma osadami nie jest wyraźna, widoczne są ślady działania rozmaitych procesów stokowych w postaci obrywów, obsunięć, śladów pełznienia itp. (fig. 7D). Od zachodu paleokoryto zamyka wypukła, sierpowata forma meandrowej łachy wałowej podcięta metrowej wysokości krawędzią opadającą ku kolejnemu paleomeandrowi o nieco większej szerokości i promieniu krzywizny.

Wypełnienie paleomeandru leżącego bardziej na zachód ma znacznie mniejszą miąższość, nieznacznie przekraczającą 2,0 m, podczas gdy wypełnienie paleomeandru leżącego bardziej na wschód osiąga miąższność niemal 4,0 m.

Fig. 7. Paleomeander Wysoka – północ. A – lokalizacja paleomeandru na tle otaczających go jednostek morfologicznych; B – szkie hipsometryczny paleomeandru z zaznaczonymi punktami badawczymi: 1 – wiercenia, 2 – wkopy; C – przestrzenny rozkład miąższości facji starorzeczy: 1 – strefa występowania osadów organogenicznych, 2 – obszar, na którym osady facji starorzecza przykryte są osadami młodsza wału przykorytowego; D – główny przekrój geologiczny: 1 – torf, 2 – mulek ilasty, 3 – mulek piaszczysty, 4 – piasek z przewarstwieniami torfu o różnym stopniu rozkładu i makrokształtkami roślin, 5 – mulek z przewarstwieniami torfu o różnym stopniu rozkładu, 6 – warstwowy piasek strefy łachy samotnej, 7 – warstwowany piasek i żwir facji korytowej, 8 – warstwowy piasek wyższego poziomu terasowego, 9 – glina piaszczysta, 10 – piaszczyste utwory stokowe, 11 – naprzemianległe piaski i mulki wału brzegowego.

Fig. 7. Paleomeander of Wysoka – North. A – morphological sketch; B – topographic sketch showing investigated places: 1 – borings, 2 – artificial outcrops; C – spatial distribution of thickness of oxbow-facies deposits: 1 – organogenic deposits, 2 – oxbow-facies deposits overlain by deposits of the younger levee; D – geological cross-section: 1 – peat, 2 – clayey silt, 3 – sandy silt, 4 – sand with peat intercalations, containing macroscopic plant remains, 5 – silt containing peat intercalations of various degree of decay, 6 – stratified sands of the levee zone, 7 – stratified sand and gravel of the river bed facies, 8 – stratified sand of the higher terrace level, 9 – sandy loam, 10 – sandy slope deposits, 11 – alternating sands and silts of the levee.
Zgodnie z rezultatami analizy palinologicznej proces wypełniania paleokoryta rozpoczął się w okresie subborealnym, prawdopodobnie na początku drugiej jego połowy (Krupiński, 1981). Paleokoryto było wtedy odcieże, bowiem osadały się w nim piaski drobnoziarniste z domieszką pylastą. Zmiana osadu na piaski poprzewarstwiane wkładkami torfu i wreszcie torf wskazują na obniżenie się poziomu wód gruntowych, co pociągnęło za sobą zanik swobodnego zwierciadła wody w opisywanym paleokorycie. Trudno dziś ustalić, w jakim stopniu przyczyną tego było przerzucenie się koryta rzeki oraz dalsze rozcinanie przez nią osadów budujących dno doliny, co mogłoby stanowić przyczynę zdrenowania odciętego fragmentu koryta, a w jakim inne procesy. Zmiana spektuum pylkowego w osadach tego okresu wskazuje jednak na przynajmniej częściowy udział zmian klimatycznych w osuszeniu dna doliny. Po tym okresie paleokoryto zaczęło się znów wypełniać osadami piasczysto-mułkowymi z cienkimi wkładkami organogenicznymi. Osady te są prawdopodobnie w dużej mierze świadectwem transportowej działalności wód bardzo dużych wezbrań, bowiem analiza profilu geologicznego ze stanowiska Wysoka – północ (fig. 7D), ani też jego sytuacja geomorfologiczna nie wskazują na bliskie sąsiedztwo czynnego koryta Bobru w okresie tworzenia się opisanej serii osadów. Po tak znacznym wypełnieniu paleokoryta ponownie powstały na jego obszarze warunki dogodne dla rozwoju akumulacji torfowej. Osady torfowe tej serii pobrane z głębokości 1,60–1,70 m wydatowano na 3520±180 lat B.P. (Gd-408).

Początek okresu subatlantycznego zaznaczył się na badanym obszarze kolejnym przerwaniem akumulacji torfowej i zapisał się wkładką piasku, która została złożona w okresie, gdy w pobliżu nie funkcjonowało czynne koryto rzeki. W spektrum pylkowym osadów piasczystych z tego okresu po raz pierwszy pojawiają się pylki zbóż.

Na warstwie piasku pochodzi ostatnia, trzecia warstwa torfu, która tworzyła się w okresie wyraźnego rozwoju zbiorowisk olszynowych. Akumulacja torfów została zastąpiona akumulacją mulków piasczystych, podścielonych zamulonymi piaskami z domieszką ilastą. Analiza przekroju geologicznego (fig. 7D) wskazuje wyraźnie, że zmiana charakteru osadu była spowodowana wkraczeniem akumulacji na badane paleokoryto i na złączoną z nim meandrową łagodę wałową, zbudowaną z serii warstwowanych piaskowców i mulków wału przykorytowego towarzyszącego nowemu korytu Bobru, który w tym czasie podcinał osady budujące zespół form meandru subborealnego. Analiza materiału palinologicznego wykazała, że przypadało to na okres subatlantycki a i początek okresu subatlantycznego b. Spektra pylkowe wskazują, że w tym czasie wzrósł wpływ człowieka, przejawiający się gospodarką rolniczą. Nie ma jednak podstaw do stwierdzenia, aby wzrost tempa fosylizacji subborealnego paleokoryta był związany z działalnością człowieka w dorzeczu Bobru (Flórek, 1979).

Dla pozostałych trzech paleomeandrów nie wykonano tak szczegółowych analiz, stąd też nie sposób rozstrzygnąć, czy różnice w rozmiarach (cechach geometrycznych) oraz cechach litologicznych i stratygraficznych pomiędzy badanymi paleomeandrami stanowią rezultat zróżnicowania ich wieku (a co za tym idzie
warunków środowiskowych, w tym klimatycznych i hydrologicznych), czy też położenia w dolinie. Należy dodać, iż dwa pierwsze z rozpatrywanych paleomeanderów (Dobruszów Mały, Nowogród Bobrzański) rozwijały się w warunkach sprzyjających rozwójowi meandrów swobodnych.

Paleomeander Dobruszów Mały leży w miejscu, gdzie piaszczyste zasypanie doliny wieku fazy leśczyńskiej (około 20 000 lat B.P.) osiągnęło nie tylko znaczną miąższość (do około 30 m), ale i rozprzestrzenienie (około 4 km). Paleomeander Nowogród Bobrzański rozwijał się na odcinku, gdzie dolina Bobru krzyżuje się z pradoliną baruco-głogowską. I tu miąższość zasypania jest podobna. W obu tych miejscach istniały dogodne warunki rozwoju meandrów swobodnych, bowiem rzeka erodowała w osadach o względnie jednolitym uziarnieniu, mało odczynnych na erozję fluwialną. Sprzyjało to rozwojowi koryta o znaczej szerokości, stosunkowo płytkiego.

Odmiennie kształtowały się warunki rozwoju paleomeanderów w okolicach Wysokiej, w rejonie przełomu Bobru przez formy marginalne ostatniego zlodowa-
cenia. Od wschodu ogranicza je Wal Zielonogórski. Powszechność występowania glin i ilów, a także utworów glaciowfluwialnych, wzbogaconych w materiał grubo-
żwirowy i kamienisty, utrudniała erozję i swobodny rozwój meandrów. Stąd paleo-
koryta są węższe, ale i znacznie głębsze.

Brak oznaczeń wiekowych osadów z paleomeanderów Dobruszów Mały i No-
wogród Bobrzański nie daje możliwości pełnej paralelizacji chronostratygraficz-
nej wszystkich badanych form i określenia wpływu czynników klimatycznych,
hydrologicznych, hydrogeologicznych, florystycznych, antropogenicznych i innych
na wykształcenie osadów wypełniających paleomeandy zachowane na terasie
środkowo-młodoholoceńskiej dolnego Bobru.

PODSUMOWANIE

1. Badania autora potwierdziły rozpowszechniający się od kilku lat w literaturze pogląd, iż fosylizacja pni drzew w osadach fluwialnych w warunkach nizowych, w strefie klimatu umiarkowane-
go wilgotnego, odbywa się głównie na drodze bocznego przesuwania koryta rzecznego. Fosylizacja pni drzewnych następuje poprzez przysypianie spoczywającego w korcie drzewa najpierw rumo-
wiskiem korytowym, a następnie osadami meandrowych lach wałowych. Pnie spoczywające w osadach korytowych systemu teras środ- kowo- i młodoholoceńskich dolnego Bobru pochodzą z przełomu okre-
su atlantycznego i subborealnego. Datowania wykonane w Laboratorium C¹⁴ Instytutu Fizyki Politechniki Gliwickiej wykazały następujący wiek próbki: 5320 ± 210 B.P., 5180 ± 180 B.P., 4610 ± 200 B.P., 4590 ± 190 B.P.

2. Na powierzchni terasy środkowo-młodoholoceńskiej zachowały się liczne ślady działalności rzeki meandrującej, głównie w postaci paleomeanderów. Stwierdzono, iż wypełnienia paleoekry są różnicyowe pod względem miąższości i charakteru. Duże formy są płytsze i wypełniają je przede wszystkim osady mineralne. Mniejsze paleomeandy są głębsze i wypełniają je głównie osady mukowe przy znaczonym udziale torfów (do trzech warstw). Wiek środkowej warstwy torfu został określony na 3520 ± 180 lat B.P. Badania palinologiczne wykazały, że wypełnianie jednego z paleomeanderów rozpoczęło się w początkach okresu subborealnego b, innego w okresie subatlantyckim a. Badania palinologiczne oraz litologiczno-stratygraficzne i geomorfologiczne wykazały, że wypełnianie paleomeanderów doko-
nywało się w zmiennych warunkach hydrologicznych i hydrogeologicznych, co mogło być spowodowa-
ne zarówno zmianami klimatu, jak i zmieniającym się w stosunku do paleomeandru położeniem aktual-
nie funkcjonującego koryta rzecznego.

WYKAZ LITERATURY — REFERENCES

Becker B. (1970), Die Jahrringanalytische Datierung und die C14 — Methode. **Mitt. der Bundes-

Becker B. (1971), Zwischenbericht über die dendrochronogische Bearbeitung subfossiler Eichen
aus Flussterrassenchottern des Südlichen Mitteleuropas. **Jahrbuch der Akad. der Wissensch. u.
der. Literatur**: 140–145.

Becker B. (1972), Möglichkeiten für den Aufbau einer absoluten Jahr- ringchronologie des Post-
45.**

Becker B. (1975), Dendrochronological observations on the postglacial river aggradation in the

of the River Main, Southern Germany. **Boreas 6, 4: 303–321.**

Dumanowski B., Jahn A., Szczepankiewicz S. (1962), The Holocene of Lower

Falkowski E. (1971), Historia i prognoza rozwoju układu koryta wybranych odcinków rzek niz-
innych Polski. History and prognosis for the development of bed configuration of selected sec-

Falkowski E. (1972), Regularities in development of Lowland rivers and changes in river bot-
Changes in the palaeogeography of valley floors of the Vistula drainage basin during Holocene”. 2-nd
Part — The Polish Lowland. 3–35. Warszawa.

Florek W. (1978a), Pozycja czarnych dębów w osadach teras rzecznych i sposób ich fosyliza-
acji w świetle badań z doliny dolnego Bobru. The position of black oaks in deposits of river terraces
and the manner of their fossilization in the light investigations from the lower Bôbr valley. **Bad.
Fizjogr. nad Polską Zach. 31, s. A: 79–92, Warszawa — Poznań.**

Florek W. (1978b), Próba analizy zmian cech geometrycznych meandrów współczesnych i kó-
palnych na przykładzie dolnego Bobru. An attempt to analyse changes in geometrical character-
istics of present-day and fossil meanders: a case study of the lower Bôbr (Western Poland).
Przegl. Geogr. 50, 4: 643–660, Warszawa.

Florek W. (1979), Rozwój dna doliny dolnego Bobru w holocenie. Praca dokt., maszynopis. Archi-

Florek W. (1981), Późnoholocennes osady wypełniające paleomeander Bobru na północ od Wy-
sokiej. The Late-Holocene sediments filling the Bôbr river paleomeander north of Wysoka. **Bad.
Fizjogr. nad Polską Zach. 33, s. A: 19–28, Warszawa — Poznań.**

Henningsen D., Mäckel R. (1969), Fossile Holzreste und Baumstämme in Flussablagerun-

Kowalski W.C. (1975), The evolution of Man’s environment in the Holocene in Poland. **Biol.
Geol. Wydz. Geol. UW 19**: 7–20, Warszawa.

Korzarski S. (1974), Późnoglacialne i holocenne zmiany w układzie koryt rzecznych niżowej
części dorzecza Odry. **Kraj. Symp. n.t. „Rozwój den dolinnych ... etc.” Streszcz. ref. i kom. 16–
19, Wrocław — Poznań.**

Korzarski S., Rotnicki K. (1977), Valley floors and changes of river channel patterns in the
Northern Polish Plain during the Late-Würm and Holocene. **Quaest. Geogr. 4: 51–93, Poznań.**

Korzarski S., Rotnicki K. (1978), Problemy późnowürmskiego i holocenowego rozwoju
dolinnych na Niziu Polskim. Problems concerning the development of valley floors during
Nauk. 19: 57, Warszawa — Poznań.**
Investigations carried out during past few years concerned the development of the Bóbr valley floor in the section between Zagań and Krosno Odrzańskie. The aim of these investigations was to reconstruct the development of two lowest terrace levels, assigned to the Middle and Young Holocene, as well as to the recent. The origin of these terraces was reconstructed on the basis of interdisciplinary studies (Florwik, 1979), including sedimentological ones.

One of the problems studied concerned fossilization of tree trunks in fluvial deposits. These trunks were usually called "black oaks" although real oaks constitute only part of them. Fossilization processes were hitherto connected with catastrophic floods affecting river valleys. The author supposes that the main process leading to the deposition of trunks within river beds is lateral migration of meandering channels. A trunk deposited in a river bed is at first covered by bed-facies alluvia and then by overbank deposits which compose meander bars of various generations.

A number of periods of increased intensity of fossilization processes can be distinguished. These periods correlate with episodes of intense lateral channel migration.

On the Middle-Young Holocene terrace surface there preserved numerous traces of paleomeanders. It has been found that paleo-channel infillings differ in thickness and character. Large forms are shallow and filled by mineral deposits while small paleomeanders are deeper and filled mainly by silty deposits, containing a large amount of peat (up to three intercalations).

The infilling of paleomeanders was developing under different hydrological and hydrogeological conditions, resulted from climatic changes as well as from changeable course of the main river bed.

translated by W. Zuchiewicz