Henryk KUCHA, Adam GŁUSZEK

ZMIENNOŚĆ OKRUSZCOWANIA Cu, Zn, Pb I Ag
W ZŁOŻU KOPALNI LUBIN

(Pl. I i 8 fig.)

Variation of Cu-Zn-Pb-Ag mineralization
in the deposit of the Lubin Mine

(Pl. I and 8 Figs.)

Abstract: Distinct variations in the character of mineralization is observed in the Zechstein copper deposits, being manifested by disappearance or considerable impoverishment of Cu-mineralization with simultaneous increase in the content of galena and sphalerite. Pb- and Zn-mineralization appears in nearly all the three lithologic types of rocks, i.e. in dolomite, shale and sandstone. The galena mineralization is accompanied by high concentration of Ag and Hg, occurring mainly in the form of amalgam-eugenite. Silver forms a number of new mineral compounds belonging to the Ag-Cu-Fe-S system, namely: Cu(Fe,Ag)S₂, (Fe,Cu)₅Cu₂(Ag,Cu)₂S₄, FeCu₂Ag₃S₇, Cu₅₋₅Fe₃₋₅Ag₁₋₅S₄, FeCu₃(Ag,Cu)₂S₅ and FeCu₃Ag₃S₄.

Key words: Cu-Zn-Pb-Ag mineralization, Zechstein copper deposits, Lubin Mine, Western Poland.

manuscript received: August, 1980 accepted: March, 1982

Treść: Na obszarze cechsztyńskich złóż miedzi występują zmiany mineralizacji w postaci znacznego zubożenia okruszcowania Cu na korzyść galeny i sfalerytu. Okrusz-
-cowanie Zn-Pb występuje we wszystkich trzech typach litologicznych, tj. dolomicie, łupku i piaskowcu. Zn obecny jest głównie w dolomicie ilastym, rzadziej w łupku cynko- nośnym, gdzie współwystępuje z frankolitem.

Okruszczeniu galeną towarzyszą wysokie koncentracje Ag i Hg. Pierwiastki te występują głównie w formie amalgamu-eugenitu. Ag tworzy ponadto szereg nowych mineralów należących do układu Ag-Cu-Fe-S: Cu(Fe,Ag)S₂, (Fe,Cu₁₋₃Cu₃Ag)S₄, Fe₄Ag₄S₇, Cu₉₋₁₃Fe₉₋₁₃Ag₁₋₃S₄, Fe₄Cu₂Ag₃S₄ oraz Fe₄Cu₂Ag₃S₄.

WSTĘP

Złoże miedzi występuje w wapieniach, dolomitach i łupkach dolnego cechsztynu, a także w białych piaskowcach. Stropowa część tych piaskowców na podstawie fauny zaliczana jest również do dolnego cechsztynu. Reszta białego piaskowca zaliczana jest do czerwonego spągowa.

Średnia miąższość horyzontu okruszczonego miedzi wynosi 3—5 m. Główne minerały kruszcowe to: chalcopyryt, chalcopyryt, djurleit, kowelin, anilin, galena i sfaleryt. Spotyka się również minerały srebra, niklu, kobaltu, molibdenu, złota, platynowców i rtęci. Główne minerały miedzi rozmieszczone są strefowo tak po upadzie, jak i w pionie. Mineralizacja miedziowa w kierunku warstw stropowych zanika stopniowo, natomiast w kierunku spągu w białych piaskowcach zanik ten jest szybki.

Badania zmian okruszczenia złoża w obszarze górniczym Kopalni Lubin podjęto w związku z obserwowanym zanikiem mineralizacji Cu i pojawieniem się w to miejsce okruszczenia ołowiem (tabl. 1). Podjęte badania miały na celu opisanie zmian mineralizacji złoża po upadzie i określenie zależności pomiędzy zawartością poszczególnych pierwiastków a okruszczeniem złoża. Problem ten ma podstawowe znaczenie gospodarcze, ponieważ podobne zjawiska, tj. zanik mineralizacji Cu na korzyść Pb, Zn, Ag i Hg — (Piestrzyński, Mayer, informacja ustna) mają miejsce również na Kopalni Rudna. Wydaje się więc, że w obszarze złoż miedzi występuje kilkusetmetrowej szerokość strefa okruszcowana Pb, Zn, Ag i Hg ciągnącą się pasem od Kopalni Lubin poprzez Kopalnię Polkowice do Kopalni Rudna. W strefie tej zawartość Cu jest niejednokrotnie pozabilsowska (tabl. 1). Wcześniejsze okonturowanie tej strefy pozwoliłoby na sensowne sterowanie eksploatacją i wykorzystanie bilansowych zawartości Pb, Zn, Ag i Hg, zajmujących przypuszczalnie znaczny obszar.

Omawianych badań dokonano na próbkach z upadowych centralnych, łączących szyby główne Kopalni Lubin z szybem północnym. Pobrano 142 próbk punktowe rozmieszczone w 18 profilach w sposób regularny na całej długości wyrobiska.
Tabela 1

Zestawienie analiz na zawartość Cu, Ag, Pb

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Numer próby bruzdowej</th>
<th>Numer próby bruzdowej</th>
<th>Miąższość (m)</th>
<th>Zawartość</th>
<th>Miąższość (m)</th>
<th>Zawartość</th>
<th>Miąższość (m)</th>
<th>Zawartość</th>
<th>Profil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ko 12-0026</td>
<td>2,20</td>
<td>0,22</td>
<td>7</td>
<td>0,05</td>
<td></td>
<td>1,20</td>
<td>0,47</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>Ko 12-0051</td>
<td>2,90</td>
<td>0,52</td>
<td>27</td>
<td>0,04</td>
<td>0,08</td>
<td>1,20</td>
<td>0,45</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Ko 12-0048</td>
<td>1,20</td>
<td>0,84</td>
<td>49</td>
<td>0,04</td>
<td>0,12</td>
<td>7,17</td>
<td>1,20</td>
<td>1,22</td>
</tr>
<tr>
<td>4.</td>
<td>Ko 12-0075</td>
<td>1,30</td>
<td>0,52</td>
<td>24</td>
<td>—</td>
<td>0,12</td>
<td>6,35</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>5.</td>
<td>Ko 12-0097</td>
<td>2,00</td>
<td>0,74</td>
<td>37</td>
<td>—</td>
<td>0,07</td>
<td>5,90</td>
<td>2,00</td>
<td>0,74</td>
</tr>
<tr>
<td>6.</td>
<td>Ko 12-0100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,09</td>
<td>7,54</td>
<td>3,40</td>
<td>0,93</td>
</tr>
<tr>
<td>7.</td>
<td>Ko 12-1100</td>
<td>1,40</td>
<td>0,31</td>
<td>33</td>
<td>—</td>
<td>0,07</td>
<td>7,92</td>
<td>1,80</td>
<td>0,89</td>
</tr>
<tr>
<td>8.</td>
<td>Ko 12-0126</td>
<td>1,30</td>
<td>0,29</td>
<td>24</td>
<td>—</td>
<td>0,09</td>
<td>6,42</td>
<td>2,00</td>
<td>0,68</td>
</tr>
<tr>
<td>9.</td>
<td>Ko 12-0162</td>
<td>1,50</td>
<td>1,48</td>
<td>—</td>
<td>—</td>
<td>0,16</td>
<td>7,61</td>
<td>2,20</td>
<td>0,53</td>
</tr>
<tr>
<td>10.</td>
<td>Ko 12-0207</td>
<td>1,80</td>
<td>0,17</td>
<td>21</td>
<td>1,34</td>
<td>0,24</td>
<td>0,41</td>
<td>2,40</td>
<td>0,38</td>
</tr>
<tr>
<td>11.</td>
<td>Ko 07-027</td>
<td>0,60</td>
<td>0,24</td>
<td>19</td>
<td>—</td>
<td>0,30</td>
<td>4,55</td>
<td>2,80</td>
<td>0,89</td>
</tr>
<tr>
<td>12.</td>
<td>Ko 07-0050</td>
<td>3,40</td>
<td>0,11</td>
<td>11</td>
<td>0,69</td>
<td>0,23</td>
<td>2,07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13.</td>
<td>Ko 07-0106</td>
<td>1,60</td>
<td>0,42</td>
<td>33</td>
<td>1,01</td>
<td>0,25</td>
<td>1,40</td>
<td>1,60</td>
<td>0,32</td>
</tr>
<tr>
<td>14.</td>
<td>Ko 07-0146</td>
<td>2,00</td>
<td>0,15</td>
<td>11</td>
<td>0,48</td>
<td>0,32</td>
<td>2,83</td>
<td>1,40</td>
<td>0,36</td>
</tr>
<tr>
<td>15.</td>
<td>Ko 07-0102</td>
<td>1,40</td>
<td>0,08</td>
<td>10</td>
<td>0,73</td>
<td>0,25</td>
<td>1,20</td>
<td>1,60</td>
<td>0,47</td>
</tr>
<tr>
<td>16.</td>
<td>Ko 07-0167</td>
<td>2,60</td>
<td>0,12</td>
<td>8</td>
<td>0,32</td>
<td>0,35</td>
<td>2,94</td>
<td>1,00</td>
<td>0,37</td>
</tr>
<tr>
<td>17.</td>
<td>Ko 07-0192</td>
<td>2,60</td>
<td>0,13</td>
<td>11</td>
<td>1,25</td>
<td>0,34</td>
<td>2,93</td>
<td>0,60</td>
<td>0,09</td>
</tr>
<tr>
<td>18.</td>
<td>Ko 08-0010</td>
<td>1,80</td>
<td>0,14</td>
<td>4</td>
<td>0,36</td>
<td>0,50</td>
<td>0,56</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
METODY BADAŃ

Badania rentgenostrukturalne wykonano metodą DSH przy użyciu dyfraktometru TUR M-61, stosując promieniowanie Co Kα filtrowane Fe.

Analiz w mikroobszarze dokonano na mikroanalizatorze Cameca MS-46 i ARL SEMQ przy napięciu przyspieszającym 20 kV, używając spektralnie czystych wzorców Fe, Cu, Ag, Sb, Bi oraz związków CuFeS2, HgS oraz KAlSiO.

Wartości krytyczne $r(\alpha, \theta)$ dla współczynników korelacji pomiędzy cechami prób oznaczonymi chemicznie dla prób bruzdowych skomasonowanych (tabl. 1) i cechami prób oznaczonymi planimetrycznie wynoszą:

- dla utworów węglanowych $r(\alpha, \theta_1) = 0,49$
- dla łupku $r(\alpha, \theta_2) = 0,49$
- dla piaskowca $r(\alpha, \theta_3) = 0,51$

gdzie: $\alpha = 0,05; \theta = n−2$; n — ilość prób, $\theta_1 = 14$, $\theta_2 = 14$, $\theta_3 = 13$

CHARAKTERYSTYKA MINERALOGICZNA OMAWIANEJ CZĘŚCI ZŁOŻA

Głównymi minerałami, jakie występują w północnej części obszaru górnego Kopalni Lubin, są: bornit, chalcopyryt, piryt, galena i sfalerety. Podrzędnie występują: kowelin i chalkozyń. Obecne są tu także — choć na ogół w bardzo małych ilościach — srebro rodzime, stromayeryt, minerały typu Cu-Fe-Ag-S, minerały szeregu kobaltyn-gerdorfit, rutyl, wurcyt i grafit.

Obok głównych minerałów płonnych — kwarcu, węglanów i minerałów ilastych — często występuje glaukonit.

Bornit jest tutaj głównym minerałem miedzianośnym. W największych ilościach bornit występuje w łupku (powyżej 11% obj.), a w najmniejszych ilościach w rudzie węglanowej. W piaskowcu bornit rzadko
tworzy większe koncentracje, występuje jednak na całej niemal długości opróbowanego przekroju złożowego.

W obrębie rudy węglanowej bornit tworzy z reguły niewielkie ziar-
na wypełniające pory pomiędzy ziarnami dolomitu. Wielkie ziarna i słu-
pienia bornitu są związane z węglanami drugiej generacji. Rozmiary
jakich skupień bornitu często przekraczają 1 mm. Bornit tworzy przerosty
z idiomorficznymi kryształami węglanów. Często występuje w zrostach
z galeną i chalkopirytem. Bornit pospolicie posiada wrostki pirytu w for-
mie drobnych kuleczek. Wyraźnie zaznacza się tu kowelinizacja bornitu
z wydzieleniem pirytu. Proces kowelinizacji bornitu jest różnie zaa wan-
sowany i nie wykazuje związku z głębokością złoża (nie rośnie po
upadzie).

W obrębie łupka cechsztyńskiego bornit występuje na ogół w postaci
drobnych ziórn (znacznie poniżej 100 μm). Pospolicie tworzy inkluzje
w matrycy ilasto-bitumicznej o wielkości poniżej 2 μm (Kucha 1976). Większe skupienia bornitu występują w postaci lamin kruszcowych
zorientowanych zgodnie z ułatwieniem skały. Grubość tych lamin do-
chodzi do 200—300 μm, a długość do kilkudziesięciu milimetrów. Bornit
tworzy także w łupku lite żylki i soczewki o grubości sporadycznie prze-
kraczającej 2 mm, a najczęściej nie osiągającej 500 μm. Wrostki pirytu
w bornicie są tu rzadsze niż w rudzie węglanowej, choć lokalnie bardzo
liczne. Bornit występuje także często w zrostach z chalkopirytem, galeną
i sfalerytem, zwłaszcza w spągu łupku ołowionośnego i cynkonośnego
(Pl. I, fig. 1). Kowelinizacja bornitu jest w łupku przeważnie słabo za-
znaczona lub wcale nie występuje.

Sposób występowania bornitu w dolomicie granicznym nie różni się
od sposobu jego występowania w rudzie węglanowej.

W rudzie piaskowcowej bornit występuje jako wypełnienie przestrze-
ni między ziarnami kwarcu. W piaskowcu stropowym bornit tworzy
przeważnie małe (do 50 μm) ziarna, czasami w zrostach z chalkopirytem,
galeną i sfalerytem, wypełniając przestrzenie między ziarnami kwarcu
i węglanami spośród. Często w bornicie są obecne idiomorficzne wrostki
kryształów kwarcu, a zwłaszcza węglanów.

W obrębie właściwego szarego piaskowca bornit tworzy na ogół duże
skupienia o rozmiarach dochodzących do 1 mm i więcej. Bornit w tych
skupieniach często tworzy zrosty ze sfalerytem, a także galeną i chalko-
pirytem. Licznie występują tu ziarna skowelinizowanego bornitu o cha-
rakterystycznej strukturze atolowej, podkreślonej przez koncentrycznie
ułożone wrostki piryty i markasytu. Zakończone nieliczne przypadki
zastępowania ziarn kwarcu i skaleni przez bornit. Proces kowelinizacji
bornitu w rudzie piaskowcowej jest przeważnie silniej rozwinięty niż ma
no miejsce w rudzie łupkowej czy węglanowej.

Za pomocą mikrosondy elektronowej często oznaczano nawet do
20% wag. Ag w bornicie (Pl. I, fig. 2).
Chalkopryt jest w omawianej części złoża drugim co do znaczenia po bornicie minerałem miedzi. Występuje w całym profilu złożowym, jednak w rudzie węglanowej nie odgrywa większej roli; tylko w łupku i rudzie piaskowcowej tworzy poważniejsze koncentracje.

W obrębie rudy węglanowej chalkopryt występuje jako minerał towarzyszący bornitowi i galeni, rzadko tworząc samodzielne ziarna. Praktycznie całość chalkopirytu występującego w rudzie węglanowej jest związana ze skupieniami węglanów drugiej generacji. Ziarna chalkopirytu zawierają liczne wrostki kryształów węglanów oraz nieliczne, drobne wrostki pirytu.

W rudzie łupkowej chalkopryt tylko lokalnie tworzy większe koncentracje, na ogół zawartość chalkopirytu nie przekracza 1% obj. Rozmiary ziarn chalkopirytu rzadko przewyższają 100 μm. Więsze skupienia tego minerału osiągają rozmiary nawet powyżej 1 mm, ale nie są zbyt częste. Chalkopryt tworzy zrosty z galeną, rzadziej z bornitem i sfalerytem, najczęściej w spagu łupku bogatego w galenę i sfaleryt (Pl. I, fig. 1). Wrostki pirytu w chalkopiryicie są rzadkie i bardzo małe.

Rola chalkopirytu w rudzie piaskowcowej jest niemal identyczna z tą, jaką pełni tu bornit. Chalkopryt występuje w piaskowcu na całej długości opróbowanego przekroju złożowego, wypełniając wolne przestrzenie między ziarnami kwarcu. Skupienia chalkopirytu osiągają znaczne rozmiary (do 5 mm). W skupieniach takich chalkopryt całkowicie niemal wypełnia przestrzenie międzyziarnowe, pełniąc rolę spośród wypełniającego. Często są zrosty chalkopirytu z bornitem, znacznie rzadsze z galeną. Powszechnie występują wrostki pirytu i markasytu. Lokalnie częste są atole chalkopirytów-pirytowe, także z silnie skowelinizowanym bornitem.

Piryt jest minerałem obecnym we wszystkich typach rudy.

W rudzie węglanowej dominuje zwłaszcza w stroceowej części złoża. Tworzy samodzielne ziarna o różnych rozmiarach (5—100 μm), a także duże (do 5 mm) skupienia złożone z drobnych kuleczek. Przestrzeń między kulkami pirytu w takich skupieniach zwykle wypełniona jest przez bornit lub przez galenę, rzadziej przez chalkopryt i sfaleryt. Forma skupień kulistego pirytu bywa bardzo różna, a ich przestrzenne ułożenie rzadko tylko pokrywa się z teksturą skały. Obok pirytu w budowie skupień bierze udział markasyt — wtedy skupienia te mają budowę koncentryczno-azonalną z naprzemiennymi pierścieniami ziarn markasytu i kuleczek pirytu. Centrum skupień markasytowo-pirytowych tworzy zwykle ziarno galeny (często w zrostach z chalkopirytem). Piryt i markasyt tworzą powszechnie wrostki w bornicie i galenie. Miejscami piryt tworzy formy atolowe. Zawartość pirytu w rudzie węglanowej wykazuje maksimum około 0,5 m nad stropem łupka.

W obrębie rudy łupkowej piryt na ogół nie tworzy większych koncentracji, jego udział rzadko przekracza 1% obj. Dominującą formą wy-
stępowania pirytu w łupku są drobne (do 20 μm) ziarna — najczęściej kuliste. Piryt rzadko tworzy tu większe skupienia. Sporadycznie można spotkać żyłki i soczewki pirytytwne o miąższości do 2 mm. Piryt tworzy wrostki w bornicie, galenie i chalkopiryście.

W piaskowcu piryt występuje dość powszechnie, tworząc samodzielną zbiornik skupienia, które wypełniają przestrzenie międzyziarnowe. Przeważnie występuje w formie zrostów z bornitem, chalkopirytem i galeną, a także w postaci wrostków w tych minerałach.

Galena występuje głównie w rudzie węglanowej i łupkowej. W piaskowcu rzadko tworzy większe koncentracje. W dolomicie galena występuje na dwa sposoby: tworzy drobne (do 50 μm) ziarna wypełniające pustki międzyziarnami dolomitu (często w zrostach z chalkopirytem, a także ze sfalertymem) oraz duże, na ogół przekraczające 100 μm ziarna i skupienia związane z gniazdami węglanów w drugiej generacji. W tym drugim przypadku obficie występują w galenie wrostki pirytu oraz idiomorficznych kryształów węglanów.

Koncentracje galeny w rudzie łupkowej często osiągają znaczne wartości (lokalin powyżej 10% obj.). Galena tworzy tu samodzielną ziarno (przeważnie poniżej 100 μm), a także zrosty z chalkopirytem, bornitem i sfalertymem, zwłaszcza w spągu łupku (Pl. I, fig. 1). Większe skupienia ziarn galeny tworzą laminy kruszcowe. Galena często zawiera wrostki pirytu i nieregularnych ziarn dolomitu, co nadaje jej ziarnom specyficznie strukturę.

W dolomicie granicznym galena występuje na ogół dość obficie, jej ziarna wypełniają pustki w skale oraz związane są z gniazdami węglanów drugiej generacji. Galena wykazuje tendencję do impregnowania pozostałości skorupęk otworówka i małży.

W obrębie rudy piaskowcowej galena zwykle występuje w drobnych ilościach, głównie w postaci wrostków w bornicie i chalkopiryście. Obecność tak wykształconej galeny zaznacza się w cienkiej (10—20 cm) warstwie stropowej piaskowca. Lokalnie tworzy jednak znaczne koncentracje i wtedy spotkać ją można na większym odcinku profili piaskowca. W miejscach większych koncentracji galena tworzy duże skupienia ziarn, pełniąc rolę spośród typu wypełniającego (Pl. I, fig. 3). Zobserwowano dość częste przypadki zastępowań ziarn skaleni i kwarcu przez galenę (Pl. I, fig. 3). Galena zawiera liczne wrostki idiomorficznego oraz ksenomorficznego kwarcu, a także wrostki idiomorficznych kryształów dolomitu. Za pomocą mikrosondy elektronowej oznaczono do 3,5% wag. Ag w galenie.

Sfaleryt jest minerałem powszechnie obecnym w omawianej części złoża. W rudzie węglanowej występuje w postaci drobnych ziarn (poniżej 50 μm) wypełniających pustki międzyziarnami dolomitu. W gniazdach węglanów drugiej generacji tworzy nieraz skupienia znacznych rozmiarów, często w zrostach z bornitem, chalkopirytem i galeną.

Tabela 2

Porównanie danych rentgenograficznych wzorcowego frankolitu (McConnell 1938) i substancji stanowiącej wypełnienie soczewki sfalerytowej z preparatu VII—3

<table>
<thead>
<tr>
<th>Frankolit</th>
<th>Badana substancja</th>
</tr>
</thead>
<tbody>
<tr>
<td>d (Å)</td>
<td>I</td>
</tr>
<tr>
<td>2,789</td>
<td>10</td>
</tr>
<tr>
<td>2,694</td>
<td>6</td>
</tr>
<tr>
<td>2,242</td>
<td>2</td>
</tr>
<tr>
<td>1,931</td>
<td>3</td>
</tr>
<tr>
<td>1,836</td>
<td>3</td>
</tr>
<tr>
<td>1,795</td>
<td>2</td>
</tr>
<tr>
<td>1,761</td>
<td>2</td>
</tr>
<tr>
<td>1,745</td>
<td>2</td>
</tr>
<tr>
<td>1,420</td>
<td>2</td>
</tr>
</tbody>
</table>

W piaskowcu sfaleryt występuje powszechnie, jednak w niewielkich ilościach. Tworzy głównie drobne ziarna występujące samodzielnie, a także zrosty z bornitem, galeną i chalkopirytem. Skupienia ziarn sfaleretytu, często w zrostach z bornitem, osiągają znaczne rozmiary (związane w piaskowcu stropowym). Wypełniają one przestrzenie międzyziarnowe, pełniąąc rolę spoiwa o typie wypełniającym. Sfaleryt zawiera liczne wrostki dolomitu, a także pirytu. Oprócz sfalerytu stwierdzono także wurtcyt (Pl. I, fig. 5).

Kowelín jest minerałem powszechnym, ale występującym w małych ilościach. Prawdopodobnie całość, a na pewno przeważająca część kowelina obecnego w złożu, jest rezultatem rozpadu bornitu.

Chalközyn jest minerałem rzadszym od kowelina. Wyjątkowo tworzy samodzielną ziarna, najczęściej występuje w postaci zrostów
i wrostków w bornicie. Jego rozmieszczenie w złożu jest bardzo nieregularne.

Siarczki srebra. Interesującą, zwłaszcza z mineralogicznego (ale także złożowego) punktu widzenia, jest obecność takich minerałów, jak: srebro rodzime, moschellandsbergit, stromeyeryt, siarczki typu Cu-Fe-Ag-S oraz minerały szeregu kobaltyn-gersdorfit.

W rudzie węglanowej nie spotkano ziarn srebra rodzimego, ani innych minerałów srebrowych. W rudzie łupkowej natomiast dość często jest eugenit i stromeyeryt. Minerały te tworzą zrosty z silnie srebronośnym bornitem i galeną (Pl. I, fig. 2). Eugenit oraz siarczki typu Cu-Fe-Ag-S stwierdzono w piaskowcu. Ich obecność zaznacza się wyłącznie w stropowej części o lepiszczu węglanowym lub też bezpośrednio poniżej. Zwłaszcza ten drugi przypadek jest szczególnie częsty. Charakterystyczny jest fakt, że stwierdzono ich obecność wyłącznie w piaskowcu bogaty w galenę. Siarczki typu Cu-Fe-Ag-S tworzą tutaj zrosty z galeną, eugenitem i stromeyerytem. Na podstawie analiz w mikroobszarze i obserwacji mikroskopowych oznaczono następujące minerały:

1 — minerał o składzie Cu(Fe,Ag)S₂, izotropowy o barwie mosiężnożółtej z lekkim odcieleniem zielonym. \(R = 44% \). Na powietrzu szybko ulega utlenieniu, dzięki czemu barwa jego staje się mosiężnożółta. W imersji jest żółty z wyraźnym odcieleniem zielonym.

2 — minerał o składzie (Fe,Cu)Cu₂(Ag,Cu)₃S₄, izotropowy, w porównaniu z galeną brunatnożółty z odcieleniem zielonym. Często jest on niehomogeniczny i zawiera myrmekitowe wrostki minerału 1 i 3. \(R \) około 30%.

3 — minerał o składzie FeCu₃Ag₈S₇, izotropowy. W powietrzu w porównaniu z eugenitem sinozary. \(R \) około 25%.

4 — minerał o składzie Cu₅.2Fe₀.55Ag₁.17S₄, izotropowy o barwie niebieskiej z odcieleniem różowobrunatnym. W powietrzu \(R \) około 26%.

5 — minerał o składzie FeCu₂(Ag,Cu)₂S₅, izotropowy, w powietrzu żółty ze słabym odcieleniem zielonkawym (bardziej żółty niż minerał 1). \(R \) około 45%.

6 — minerał o składzie FeCu₂Ag₃S₄, niehomogeniczny, mieszanina minerałów 1 i 3.

Obecność minerałów szeregu kobaltyn-gersdorfit stwierdzono w piaskowcu. Występują one tam jako wrostki w galenę. Ziarna tych minerałów są z reguły niewielkie (poniżej 20 \(\mu m \)), jednak zdarzają się większe, osiągające prawie 50 \(\mu m \). Ich barwa, w porównaniu z pierytem, jest biała, jednak na tle galen wykazują wyraźny kremowy odcięń.

W preparacji XVII-4 stwierdzono obecność v a e s y t u, który występuje tam w postaci drobnych, kulistych wrostków w bornicie.

Glua k o n i t jest minerałem dość rozpowszechnionym w piaskowcu, gdzie jego obecność zaznacza się wzdłuż całego opróbowanego przełomu złożowego. W łupku i rudzie węglanowej glaukonit występuje
sporadycznie, jednak w profilach XVIII, I, XVII na granicy łupek-dolomit, stwierdzono znaczne nagromadzenia tego minerału. Glaukonit występuje na wysokości 2—3 cm nad spągiem dolomitu. Zawartość glaukonitu rośnie ku dołowi, aby osiągnąć swoje maksimum w kilkumilimetrowej warstwie na granicy łupka cechsztyńskiego z dolomitem miedziośnieznym. Glaukonit w dolomicie występuje w postaci pojedynczych ziarn, natomiast na granicy łupka i dolomitu ziarna glaukonitu tworzą duże skupienia (Pl. I; fig. 6). Często skupienia te otoczone są pierścieniami utworzonymi przez bornit z wrostkami pirytu (Pl. I, fig. 6). Opisany glaukonit jest wiązany z nową, dotąd nie opiswaną facjalną odmianą łupka — łupka glaukonitowego. Chemicznie opisywany glaukonit jest glaukonitem miedzio wym, zawiera bowiem do 6% wag. Cu.

ZMIANY MINERALIZACJI PO UPADZIE W PÓŁNOCNEJ CZĘŚCI ZŁOŻA KOPALNI LUBIN

Charakter mineralizacji na opróbowanym odcinku profilu złożowego wykazuje dużą zmienność. Pozwala to na wydzielenie stref, w których o wartości złoża decydują dwa z wcześniej opisanych głównych minerałów rudnych.

Na podstawie analizy zmian zawartości głównych minerałów złożowych wydzielono następujące strefy:

A — bornitowa z pirytem, pomiędzy Ko 12/26 a Ko 12/168 około 800 m po upadzie (fig. 1, 2)
B — glaukonitowa z pirytem i bornitem, pomiędzy Ko 12/51 a Ko 12/75 około 150 m po upadzie (fig. 1, 2)
C — chalkopirytozą z galeną, pomiędzy Ko 12/168 a Ko 7/106 około 600 m po upadzie (fig. 3, 4, 8)
D — galenową z sfalerytem, pomiędzy Ko 7/106 a Ko 8/10 około 800 m po upadzie (fig. 3, 5, 8)

Granice stref określono na podstawie zmian mineralizacji w łupku cechsztyńskim.

Ruda węglanowa

Dolomit charakteryzuje się niską zawartością minerałów miedzi, natomiast znacznymi koncentracjami pirytu, galen i sfalerytu. Jedynie w obrębie strefy bornitowej w cienkjej, 20—40 cm warstwie spągowej dolomitu występują poważniejsze ilości bornitu (fig. 1). Bezpośrednio nad warstwą dolomitu bogatego w bornit występuje horyzont pirytowy wyznaczający tu strop złoża miedzi (fig. 2). 1—2 m nad stropem łupka zaznacza się lokalny wzrost zawartości galen (fig. 3). Prawdopodobnie jest to związane z nisko tutaj zalegającym horyzontem Pb-Zn.
Fig. 1. Bornite concentration in vertical profile of the deposit along central dips. 1 — sandstone, 2 — shale, 3 — carbonate rock.
Fig. 2. Koncentracja pirytu w profilu pionowym złoża wzdłuż upadowych centralnych. 1, 2, 3 — jak na fig. 1

Fig. 2. Pyrite concentration in vertical profile of the deposit along central dips. 1, 2, 3 see Fig. 1
Fig. 3. Galena concentration in vertical profile of the deposit along central dips. 1, 2, 3 — see Fig. 1
Fig. 4. Chalcopirite concentration in vertical profile of the deposit along central dips. 1, 2, 3 — see Fig. 1
Fig. 5. Sphalerite concentration in vertical profile of the deposit along central dips. 1, 2, 3 — see Fig. 1.
W obrębie strefy chalkopyrytowo-galenowej (fig. 3, 4) w rudzie węglanowej gwałtownie rośnie zawartość PbS. Fakt ten jest związany z pojawieniem się okruszczowania galenowo-sfalerytowego w łupku cechsztyńskim. Okruszczowanie minerałami miedzi znika tu niemal całkowicie. Dolomit okruszczany galeną i sfaleretem sporadycznie tylko na większą miąższość. Znaczniejsze okruszczowanie galeną i sfaleretem ogranicza się do 40 cm w spągu dolomitu. Lokalne maksimum zawartości sfalerytu jest związane z silnie ilastą odmianą dolomitu (fig. 5). W obrębie strefy chalkopyrytowo-galenowej kontynuuje się warstwa pirytowa ograniczającą od góry horyzont miedzianoży. Łączy się ona tutaj z warstwą pirytową ograniczającą od góry horyzont olowionoży (fig. 3).

W obrębie strefy galenowo-sfalerytowej dolomit charakteryzuje się szczególnie dużymi koncentracjami sfalerytu przy niewielkiej zawartości galeny. Godny podkreślenia jest fakt, że dolomit zawierający powyżej 1% obj. sfalerytu osiąga miąższość do 1,5 m. Duże koncentracje sfalerytu związane są z dolomitem silnie ilastym o ciemnej, niemal czarnej barwie, makroskopowo bardzo podobnym do łupka cechsztyńskiego. Nigdzie poza strefą galenowo-sfalerytową dolomit ilasty nie osiąga takiej miąższości, a najczęściej jest całkowicie nieobecny.

W obrębie rudy węglanowej zawartość srebra wykazuje dobrą korelację z zawartością miedzi (r = 0,87). Przyczyną tego jest wielokrotnie opisywane (Konstantynowicz et al 1971, Salamon 1977) występowanie Ag jako domieszki izomorficznej w minerałach miedzi. Wysoki współczynnik korelacji (r = 0,75) między zawartością bornitu i kowelinu jest spowodowany tym, że kowelin w głównej mierze jest w omawianej części złoża rezultatem rozpadu bornitu na CuS + FeS₂. Ujemne współczynniki korelacji zawartości sfalerytu z zawartością Cu, Ag, bornitu, kowelinu i galeny są spowodowane faktem, że mineral ten występuje w dolomicie na ogół samodzielnie i jest związany z dolomitem ilastym, ubogim w pozostałe minerały.

Ruda łupkowa

Łupek cechsztyński nieobecny na początku opróbowanego przekroju złożowego (próba bruzdowa Ko 12-26) systematycznie zwiększa swą miąższość po upadzie osiągając na końcu przekroju miąższość 50 cm. W strefie bornitowej jest on okruszczowany na całej miąższości przez bornit i piryty. W obrębie tej strefy, między próbami Ko 12-51 i Ko 12-75, a więc w obszarze najwyższej zawartości piryty (powyżej 6% obj.) występuje łupek glaukonitowy. Jest to cienka, kilkumilimetrowa warstwa na granicy łupka miedzianoży i dolomitu, wyróżniająca się wysoką zawartością glaukonitu występującego w dużych skupieniach. Omawiany łupek glaukonitowy może być facjalnym odpowiednikiem ankeryto-
Węgla wapienia organogenicznego z glaukonitem i metalami rodzijnymi. Wapień ten stwierdzono w rejonie Lubina Zachodniego.

W obrębie strefy chalkopirytwowo-galenowej, obok chalkopirytu i galeny, występuje w łupku także bornit. Chalkopiryty i galena występują na całej miąższości łupka, natomiast bornit jest obecny tylko w jego spągu. Dolomit graniczny występuje w strefach chalkopirytwowo-galenowej i galenowo-sfalerytowej w postaci soczewek o niewielkich rozmiarach. W obu tych obszarach na granicy łupek — dolomit graniczny występuje kilkumilimetrówka lita warstwa zrostów galeny, chalkopirytu, sfalerytu i bornitu.

<table>
<thead>
<tr>
<th>Tabela 3</th>
</tr>
</thead>
</table>

Współczynniki korelacji liniowej pomiędzy pierwiastkami i minerałami w badanym obszarze

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>bornit</th>
<th>chalkopiryty</th>
<th>kowelin</th>
<th>chalkozyn</th>
<th>galena</th>
<th>sfaleryt</th>
<th>piżyty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,87</td>
<td>0,55</td>
<td>0,01</td>
<td>0,25</td>
<td>0,30</td>
<td>0,08</td>
<td>-0,48</td>
<td>-0,28</td>
<td>d</td>
</tr>
<tr>
<td>0,76</td>
<td>0,65</td>
<td>-0,41</td>
<td>0,46</td>
<td>0,49</td>
<td>-0,75</td>
<td>-0,51</td>
<td>0,37</td>
<td>ł Cu</td>
</tr>
<tr>
<td>0,58</td>
<td>0,21</td>
<td>0,28</td>
<td>0,38</td>
<td>-0,04</td>
<td>-0,68</td>
<td>-0,32</td>
<td>-0,38</td>
<td>p</td>
</tr>
<tr>
<td>0,42</td>
<td>-0,06</td>
<td>0,25</td>
<td>-0,00</td>
<td>0,15</td>
<td>-0,54</td>
<td>-0,18</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>0,70</td>
<td>-0,29</td>
<td>0,42</td>
<td>0,67</td>
<td>-0,64</td>
<td>-0,38</td>
<td>-0,19</td>
<td>ł Ag</td>
<td></td>
</tr>
<tr>
<td>0,08</td>
<td>-0,15</td>
<td>0,28</td>
<td>-0,02</td>
<td>-0,10</td>
<td>-0,18</td>
<td>-0,04</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>0,00</td>
<td>0,75</td>
<td>0,48</td>
<td>-0,25</td>
<td>-0,47</td>
<td>-0,35</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,43</td>
<td>0,56</td>
<td>0,44</td>
<td>-0,79</td>
<td>-0,26</td>
<td>0,17</td>
<td>ł bornit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,32</td>
<td>0,18</td>
<td>0,69</td>
<td>-0,54</td>
<td>-0,33</td>
<td>-0,30</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,24</td>
<td>-0,20</td>
<td>0,54</td>
<td>0,27</td>
<td>0,26</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,38</td>
<td>-0,13</td>
<td>0,41</td>
<td>-0,09</td>
<td>-0,19</td>
<td>ł chalkopiryty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,23</td>
<td>-0,26</td>
<td>-0,08</td>
<td>0,02</td>
<td>-0,00</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,60</td>
<td>0,12</td>
<td>-0,38</td>
<td>-0,32</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,09</td>
<td>-0,59</td>
<td>-0,22</td>
<td>0,06</td>
<td>ł kowelin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,27</td>
<td>-0,42</td>
<td>-0,31</td>
<td>-0,43</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,26</td>
<td>-0,29</td>
<td>-0,44</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,41</td>
<td>-0,19</td>
<td>0,02</td>
<td>ł chalkozyn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,03</td>
<td>0,08</td>
<td>0,30</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,39</td>
<td>0,13</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>-0,33</td>
<td>ł galena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,55</td>
<td>0,76</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| d — dolomit |
| ł — łupek |
| p — piaskowiec |
W strefie galenowo-sfalerytowej w obrębie łupka wyróżnić można trzy poziomy: bornitowy w spągu, galenowy w centrum i sfalerytowy w stropie łupka. Granice między tymi poziomami są nieostre i charakteryzują się obecnością wzajemnych zrostów minerałów głównych dla graniczących ze sobą poziomów.

Współczynniki korelacji głównych minerałów wykazują dla łupka na ogół ujemne wartości (tab. 3). Jest to zapewne rezultatem dość ścisłego rozdzielenia tych minerałów w rudzie łupkowej. Konsekwencją bezpośrednią tego samego faktu są ujemne wartości współczynników korelacji zawartości galeny i sfalerytu z zawartością Cu, a pośrednio — z zawartością Ag. Jedyny dodatni współczynnik korelacji dla zawartości galeny i charkopirytu należy tłumaczyć wspólnym występowaniem tych minerałów w strefie charkopirytowo-galenowej oraz nagminnym występowaniem zrostów tych minerałów. Związane to jest między innymi z tworzeniem się jednego i drugiego minerału w zbliżonym zakresie Eh-pH (Garrels, Christ 1965).

Ruda piaskowcowa

W obrębie piaskowca granice wyróżnionych stref są słabo widoczne. Najwyraźniej zaznacza się tutaj strefa bornitowa. Bornit tworzy większe koncentracje na głębokości od 0,4 do 1,5 m poniżej spągu łupka (fig. 1). Charkopiryty tworzy w piaskowcu odosobnione maksima koncentracji o charakterze wyspowym (fig. 4). W podobny sposób występuje w piaskowcu piryty (fig. 2). Sfaleryt tworzy w piaskowcu wąską strefę zalegającą na całej niemal długości przekroju złóżowego. Warstwa ta, o grubości 10—20 cm zalega tuż poniżej stropu piaskowca (fig. 5). Występowanie galeny w piaskowcu ogranicza się także do jego stropowej części, ale tylko w strefie charkopirytowo-galenowej i galenowo-sfalerytowej (fig. 5).

Niskie współczynniki lub brak korelacji między zawartością srebra a zawartością Cu i bornitu spowodowane zostało prawdopodobnie tym, że w piaskowcu srebro powszechnie tworzy własne minerały. Dodatni współczynnik korelacji galeny i pirytu (r = 0,76) odpowiada wspólnemu występowaniu tych minerałów w stropie piaskowca. Oprócz tego galena wykazuje ujemne współczynniki korelacji z zawartością Cu i bornitu, co jest rezultatem uwidocznionego na przekrojach (fig. 1—8) rozdzielenia podwyszonych zawartości tych składników.

W przedstawionym przekroju geologicznym (fig. 1—8) istotny jest brak łupku w jego początkowej części. Zgodnie z koncepcją istnienia dwu różnych zbiorników sedymentacyjnych w okresie cehsztynu międznośnego (Harańczyk 1972) można tu dopatrywać się istnienia piaszczystej bariery lagunowej, tym bardziej że stwierdzona lokalizacja skał
Fig. 6. Koncentracja miedzi w profilu phonowym złoża wzdłuż upadłowych centralnych. 1, 2, 3 — jak na fig. 1.
Fig. 7. Koncentracja srebra w pionowym profilu złoża wzdłuż upadowych centralnych. 1, 2, 3 — jak na fig. 1

Fig. 7. Ag concentration in vertical profile of the deposit along central dips. 1, 2, 3 — see Fig. 1
Fig. 8. Koncentracja ołowiu w pionowym profilu złoża wzdłuż upadowych centralnych. 1, 2, 3 — jak na fig. 1

Fig. 8. Pb concentration in vertical profile of the deposit along central dips. 1, 2, 3 — see Fig. 1.
w przekroju wydaje się odpowiadać proponowanej przez Harańczyka (1972). Istnieją jednak różnice w przestrzennym rozmieszczeniu kruszców w złożu w stosunku do rozmieszczenia Cu, Zn i Pb w lagunie (Harańczyk 1972, str. 134, fig. 14). Nieoczekiwana jest tu wysoka zawartość glaukonitu miedziowego i okładającego, epigenetycznego bornitu i pirytu (fig. 6). Mineralizacja Cu jest wtóra w stosunku do glaukonitu i może być efektem reakcji siarki z Fe i Cu zawartymi w glaukonicie. Horyzonty zmineralizowane Cu (fig. 6), Pb (fig. 3, 8) i Zn (fig. 5) zachodzą na siebie w poziomie choć w pionie występują na ogół oddzielnie. Na ogół mamy do czynienia z trójdzielnym łupkiem: Cu w spągu, Pb w środku i Zn w stropie, przy czym ten ostatni przechodzi najczęściej w dolomit ilasty zawierający bogatą monomineralną mineralizację sfalerytową. Ten sposób rozmieszczenia Cu, Pb i Zn jest sprzeczny z rozmieszczeniem proponowanym w obrębie laguny (Harańczyk 1972), gdzie Cu, Pb i Zn miałyby tworzyć facjalnie łupki zajmujące w poziomie odrębne obszary.

Obserwowane fakty można najpełniej wytłumaczyć działaniem syn- i epigenety: laguny w początkowym okresie, następnie procesu sabkha (Renfro, 1974), descenzy solanki ze zbiornika ewaporacyjnego (Davidson, 1965) a także swoistym metamorfizmem solankowym w czasie diagenezy.

WNIOSKI

1. W strefie bornitowo-pirytowej okruszczowanie ogranicza się w zasadzie do łupku miedzianośnego i piaskowca.
2. Łupek glaukonitowy (występujący w obrębie strefy bornitowo-pirytowej) może być facjальным odpowiednikiem wapnia organogenickiego z glaukonitem, stwierdzonego w obszarze górniczym kopalni „Lubin Zachodni”.
3. W strefach chalkopirytowo-galenowej i galenowo-sfalerytowej okruszczowany jest jedynie spąg dolomitu i łupek cechsztyński. Utwory węglanowe są zmineralizowane na większej miąższości jedynie w miejscach występowania dolomitu ilastego.
4. Dolomit ilasty jest okruszczowany głównie sfalerytem.
5. Łupek ołowionośny (okruszczowany głównie galeną) posiada tutaj nienotowane dotąd rozprzestrzenienie do 1400 m po upadzie.
6. W stropie piaskowca znaczące koncentracje tworzą PbS i ZnS.
7. Koncentracji galeny w piaskowcu towarzyszą minerały szeregu kobaltyn-gersdorffit oraz eugenit i siarczki typu Cu-Fe-Ag-S, będące nowymi, dotąd nienotowanymi fazami.
Distinct variations of the character of mineralization is observed along the dip of the Zechstein copper deposits. These variations are manifested by disappearance or considerable impoverishment of Cu-mineralization (Figs. 1, 4 and 6) with simultaneous increase in the content of galena (Figs. 3 and 8) or sphalerite (Fig. 5). Parallel increase in the amount of these two minerals is less pronounced. The zone of high (economic) concentrations of Zn and Pb is up to 1400 m wide, along the dip (Figs. 3, 5 and 8) and stretches approximately parallel to the strike of copper deposit. Pb- and Zn-mineralization appears in nearly all the three lithologic types of rocks, i.e. in dolomite, shale and sandstone. The following zones have been distinguished on the basis of variations of the major minerals content:

A — bornitic with pyrite — between Ko 12/26 and Ko 12/168, approx. 800 m along the dip (Figs. 1, 2),

B — glauconitic with pyrite and bornite — between Ko 12/51 and Ko 12/75, approx. 150 m along the dip (Figs. 1, 2),
C — chalcopyritic with galena — between 12/168 and Ko 7/106, approx. 600 m along the dip (Figs. 3, 4 and 8).

D — galena zone with sphalerite — between Ko 7/106 and Ko 8/10, approx. 800 m along the dip (Figs. 3, 5 and 8).

The occurrence of copper mineralization is limited in the profile under consideration mainly to the bottom part of the shale (Fig. 6). Dolomite is mineralized by galena, predominantly in the bottom part, 40 cm thick. Dolomite, strongly enriched in clay admixture, contains high amounts of ZnS but it is usually very poor in galena. Clayey dolomite resembles megascopically a shale and within the area in question it is up to 1.5 m thick.

When protruding along the dip of the Zechstein deposit, there appears a copper-bearing shale, the thickness of which regularly increases. Further downwards there appears a transition zone of glauconite shale, mineralized by bornite and pyrite, 150 m wide (Pl. I, Fig. 6). The form of occurrence of Cu₉FeS₄ suggests that mineralizing solutions contained copper and sulphur, whereas iron was derived from glauconite. Glaucnite could also play the role of a reducter for dissolved ions.

Three horizons within the shale of sphalerite-galena zone can be distinguished: bornitic in the bottom, galenitic in center and sphaleritic in the top part. Boundaries between these horizons are not sharp and are characterized by the occurrence of mutual intergrowths of major minerals of the zones mentioned above. Besides, Zn-bearing shale is distinguished by the presence of lenticular concentrations of francolite, several mm in size and being rimmed with sphalerite.

Sandstones contain higher concentrations of bornite, down to a depth of 1.5 m (Fig. 1). Galena and sphalerite occur in the top part of sandstone as its basal cement (Fig. 3).

Bornite occurs in dolomite in grains up to 1 mm in diameter. These grains are intergrown with euhedral crystals of carbonates, galena and chalcopyrite. Finer grains of bornite (less than 100 µm in size) occur in copper-bearing shales. This mineral usually forms inclusions in a clay-bituminous matrix, often less than 2 µm in size. Higher concentrations of bornite are found in laminae 200—300 µm thick, oriented concordantly with rock bedding. It also occurs in secondary veins, up to 2 cm thick. In sandstone, bornite occurs in concentrations up to 2 m thick, being often intergrown with PbS and ZnS.

Galena and sphalerite, dispersed in dolomite, occur in grains up to 50 µm in diameter, whilst those in carbonates of second generation are usually larger than 100 µm. They form characteristic laminae. ZnS and francolite occur as cement in sandstone.

Pb and Zn-mineralization in the area under consideration is accompanied by high concentration of Ag (up to 2000 ppm) and Hg (up to 1000 ppm). Silver and mercury occur predominantly in shale and in the
top part of sandstone (Fig. 7). Mercury occurs in two mineral forms: as eugenite (amalgam with silver) and, in lower amounts, as organometallic compound.

Eugenite and stromeyerite are the main Ag-minerals in this area. Moreover, this element occurs as admixture in bornite (up to 20 wt. percent) and in galena (up to 3 wt. percent). Some new compounds, corresponding to various phases of the Ag-Cu-Fe-S system have also been observed and can be preliminary described as follows:

1. Isotropic mineral of the composition Cu(Fe,Ag)S₂, showing brassy yellow colour with slight green shade (R = 44⁰/₀). It is rapidly oxidized when exposed to air, changing its colour to brassy yellow. In immersion it is yellow with distinct greenish shade.

2. Isotropic mineral of the composition (Fe,Cu)Cu₃(Ag,Cu)₂S₄. When compared with galena it is brownish yellow with greenish shade, often inhomogeneous, containing myrekitic inclusions of minerals 1 and 3. Reflection coefficient R amounts to approximately 30⁰/₀.

3. Isotropic mineral (FeCu₃Ag₅S₇), gray when compared with eugenite. R amounts to 25⁰/₀.

4. Isotropic mineral (Cu₄.₂₈Fe₀.₅₅Ag₁.₁₇S₄) showing blue colour with pinkish-brown shade. Reflection coefficient is around 26⁰/₀.

5. Isotropic yellow mineral (FeCu₃ (Ag,Cu)₂S₃) with greenish shade, more yellow than mineral 1. R amounts to 45⁰/₀.

6. Often inhomogeneous mineral (FeCu₂Ag₃S₄), locally representing a mixture of minerals 1 and 3.

OBJAŚNIENIA PLANSZ — EXPLANATIONS OF PLATES

Plansza I — Plate I

Fig. 1. Mikrofotografia łączka ołowionośnego w jego spągowej części. Widoczne bogate okruszcowanie galeną (białe), bornitem (jasnoszare) i sfaleritem (ciemnoszare). Kop. Lubin, preparat VI-3B. Światło odbite.

Fig. 1. Photomicrograph of lead-bearing shale in its top part. Rich concentrations of galena (white), bornite (light gray) and sphalerite (dark gray). Lubin mine. Sample VI-3B. Reflected light.

Fig. 2. Mikrofotografia bornitu srebrowego (20% wag. Ag, jasnoszary) współwystępującego z amalgamatem srebra — eugenitem (biały). Łupek, Kop. Lubin, preparat XVII-5. Światło odbite.

Fig. 2. Photomicrograph of silver-bearing bornite (light gray), associated with eugenite (white). Shale. Lubin mine. Sample XVII-5. Reflected light.

Fig. 3. Galena wypełniająca przestrzenie międzysiarnowe w piaskowcu stropowym. Widoczny relikt skalenia zastępowanego przez PbS. Kop. Lubin. Preparat VI-4B. Światło odbite.

Fig. 3. Galena filling intergranular spaces in sandstone. A feldspar relict replaced by PbS. Lubin mine. Sample VI-4B. Reflected light.
Fig. 4. Photomicrograph of a sphalerite laminae characteristic of clayey dolomite and Zn-bearing shale. Lubin mine. Sample VI-1A. Reflected light.

Fig. 5. Photomicrograph of zonal wurtzite occurring at the boundary of a sphalerite lense in Zn-bearing shale. Lubin mine. Sample VII-4A. Crossed nicols, immersion, reflected light.

Fig. 6. Characteristic aggregate of glauconite grains in glauconitic shale of the Lubin mine. Glauconite grains are occluded by bornite with pyrite inclusions. Sample XVIII-4. Lubin mine. Reflected light. g — glauconite.